RB69 DNA Polymerase Structure, Kinetics, and Fidelity
نویسندگان
چکیده
This review will summarize our structural and kinetic studies of RB69 DNA polymerase (RB69pol) as well as selected variants of the wild-type enzyme that were undertaken to obtain a deeper understanding of the exquisitely high fidelity of B family replicative DNA polymerases. We discuss how the structures of the various RB69pol ternary complexes can be used to rationalize the results obtained from pre-steady-state kinetic assays. Our main findings can be summarized as follows. (i) Interbase hydrogen bond interactions can increase catalytic efficiency by 5000-fold; meanwhile, base selectivity is not solely determined by the number of hydrogen bonds between the incoming dNTP and the templating base. (ii) Minor-groove hydrogen bond interactions at positions n - 1 and n - 2 of the primer strand and position n - 1 of the template strand in RB69pol ternary complexes are essential for efficient primer extension and base selectivity. (iii) Partial charge interactions among the incoming dNTP, the penultimate base pair, and the hydration shell surrounding the incoming dNTP modulate nucleotide insertion efficiency and base selectivity. (iv) Steric clashes between mismatched incoming dNTPs and templating bases with amino acid side chains in the nascent base pair binding pocket (NBP) as well as weak interactions and large gaps between the incoming dNTPs and the templating base are some of the reasons that incorrect dNTPs are incorporated so inefficiently by wild-type RB69pol. In addition, we developed a tC°-tCnitro Förster resonance energy transfer assay to monitor partitioning of the primer terminus between the polymerase and exonuclease subdomains.
منابع مشابه
Characterization of a replicative DNA polymerase mutant with reduced fidelity and increased translesion synthesis capacity
Changing a highly conserved amino acid in motif A of any of the four yeast family B DNA polymerases, DNA polymerase alpha, delta, epsilon or zeta, results in yeast strains with elevated mutation rates. In order to better understand this phenotype, we have performed structure-function studies of homologous mutants of RB69 DNA polymerase (RB69 pol), a structural model for family B members. When L...
متن کاملKinetics of error generation in homologous B-family DNA polymerases
The kinetics of forming a proper Watson-Crick base pair as well incorporating bases opposite furan, an abasic site analog, have been well characterized for the B Family replicative DNA polymerase from bacteriophage T4. Structural studies of these reactions, however, have only been performed with the homologous enzyme from bacteriophage RB69. In this work, the homologous enzymes from RB69 and T4...
متن کاملInsights into Base Selectivity from the 1.8 Å Resolution Structure of an RB69 DNA Polymerase Ternary Complex†
Bacteriophage RB69 DNA polymerase (RB69 pol) has served as a model for investigating how B family polymerases achieve a high level of fidelity during DNA replication. We report here the structure of an RB69 pol ternary complex at 1.8 Å resolution, extending the resolution from our previously reported structure at 2.6 Å [Franklin, M. C., et al. (2001) Cell 105, 657-667]. In the structure present...
متن کاملProcessivity clamp gp45 and ssDNA-binding-protein gp32 modulate the fidelity of bacteriophage RB69 DNA polymerase in a sequence-specific manner, sometimes enhancing and sometimes compromising accuracy.
Numerous studies of the impact of accessory proteins upon the fidelity of DNA synthesis have provided a complex and sometimes discordant picture. We previously described such an analysis conducted in vitro using various bacteriophage RB69 gp43 mutator DNA polymerases with or without the accessory proteins gp32 (which binds single-stranded DNA) plus gp45/44/62 (processivity clamp and its loaders...
متن کاملStructure of the Replicating Complex of a Pol α Family DNA Polymerase
DNA polymerases, with the exception of DNA polymer-ase  (pol ), have a common structural core, containing the two universally conserved aspartate residues (De-larue et al., 1990) which, together with the dNTP, bind and Biochemistry the two divalent metal ions that catalyze the polymerase Two structures of the DNA polymerase from the bacte-Yale University riophage RB69 (RB69 pol) have been des...
متن کامل